Telegram Group & Telegram Channel
πŸ–₯ SQL Flow

SQL Flow позиционируСтся ΠΊΠ°ΠΊ Β«DuckDB для ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…Β» β€” лёгковСсный Π΄Π²ΠΈΠΆΠΎΠΊ stream-ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΉ ΠΎΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ вСсь pipeline СдинствСнным языком SQL ΠΈ слуТащий ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½ΠΎΠΉ Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²ΠΎΠΉ Apache Flink.

πŸ” ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ возмоТности:

- Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊΠΈ (Sources): Kafka, WebSocket-стримы, HTTP-webhooks ΠΈ Π΄Ρ€.
- ΠŸΡ€ΠΈΡ‘ΠΌΠ½ΠΈΠΊΠΈ (Sinks): Kafka, PostgreSQL, Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ S3-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Ρ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π°, Π»ΡŽΠ±Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ DuckDB (JSON, Parquet, Iceberg ΠΈ Ρ‚.Π΄.).
- SQL-ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Ρ‡ΠΈΠΊ (Handler): встраиваСт DuckDB + Apache Arrow; ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ Π°Π³Ρ€Π΅Π³Π°Ρ‚Ρ‹, ΠΎΠΊΠΎΠ½Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, UDF ΠΈ динамичСский Π²Ρ‹Π²ΠΎΠ΄ схСмы.
- Π£ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΠΊΠ½Π°ΠΌΠΈ: in-memory tumbling-windows, Π±ΡƒΡ„Π΅Ρ€Π½Ρ‹Π΅ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹.
- ΠΠ°Π±Π»ΡŽΠ΄Π°Π΅ΠΌΠΎΡΡ‚ΡŒ: встроСнныС Prometheus-ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ (с Ρ€Π΅Π»ΠΈΠ·Π° v0.6.0).

πŸ”— АрхитСктура

ΠšΠΎΠ½Π²Π΅ΠΉΠ΅Ρ€ описываСтся YAML-Ρ„Π°ΠΉΠ»ΠΎΠΌ с Π±Π»ΠΎΠΊΠ°ΠΌΠΈ `source β†’ handler β†’ sink`.
Π’ΠΎ врСмя выполнСния:

1. Source считываСт ΠΏΠΎΡ‚ΠΎΠΊ (Kafka, WebSocket …).
2. Handler выполняСт SQL-Π»ΠΎΠ³ΠΈΠΊΡƒ Π² DuckDB.
3. Sink сохраняСт Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠ΅ Ρ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π΅.

βœ… Быстрый старт (β‰ˆ 5 ΠΌΠΈΠ½ΡƒΡ‚)


# ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π·
docker pull turbolytics/sql-flow:latest

# тСстовая ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ
docker run -v $(pwd)/dev:/tmp/conf \
-v /tmp/sqlflow:/tmp/sqlflow \
turbolytics/sql-flow:latest \
dev invoke /tmp/conf/config/examples/basic.agg.yml /tmp/conf/fixtures/simple.json

# запуск ΠΏΡ€ΠΎΡ‚ΠΈΠ² Kafka
docker-compose -f dev/kafka-single.yml up -d # ΠΏΠΎΠ΄Π½ΡΡ‚ΡŒ Kafka

docker run -v $(pwd)/dev:/tmp/conf \
-e SQLFLOW_KAFKA_BROKERS=host.docker.internal:29092 \
turbolytics/sql-flow:latest \
run /tmp/conf/config/examples/basic.agg.mem.yml --max-msgs-to-process=10000


β–ͺ Github

@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/sqlhub/1874
Create:
Last Update:

πŸ–₯ SQL Flow

SQL Flow позиционируСтся ΠΊΠ°ΠΊ Β«DuckDB для ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…Β» β€” лёгковСсный Π΄Π²ΠΈΠΆΠΎΠΊ stream-ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΉ ΠΎΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ вСсь pipeline СдинствСнным языком SQL ΠΈ слуТащий ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½ΠΎΠΉ Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²ΠΎΠΉ Apache Flink.

πŸ” ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ возмоТности:

- Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊΠΈ (Sources): Kafka, WebSocket-стримы, HTTP-webhooks ΠΈ Π΄Ρ€.
- ΠŸΡ€ΠΈΡ‘ΠΌΠ½ΠΈΠΊΠΈ (Sinks): Kafka, PostgreSQL, Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ S3-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Ρ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π°, Π»ΡŽΠ±Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ DuckDB (JSON, Parquet, Iceberg ΠΈ Ρ‚.Π΄.).
- SQL-ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Ρ‡ΠΈΠΊ (Handler): встраиваСт DuckDB + Apache Arrow; ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ Π°Π³Ρ€Π΅Π³Π°Ρ‚Ρ‹, ΠΎΠΊΠΎΠ½Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, UDF ΠΈ динамичСский Π²Ρ‹Π²ΠΎΠ΄ схСмы.
- Π£ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΠΊΠ½Π°ΠΌΠΈ: in-memory tumbling-windows, Π±ΡƒΡ„Π΅Ρ€Π½Ρ‹Π΅ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹.
- ΠΠ°Π±Π»ΡŽΠ΄Π°Π΅ΠΌΠΎΡΡ‚ΡŒ: встроСнныС Prometheus-ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ (с Ρ€Π΅Π»ΠΈΠ·Π° v0.6.0).

πŸ”— АрхитСктура

ΠšΠΎΠ½Π²Π΅ΠΉΠ΅Ρ€ описываСтся YAML-Ρ„Π°ΠΉΠ»ΠΎΠΌ с Π±Π»ΠΎΠΊΠ°ΠΌΠΈ `source β†’ handler β†’ sink`.
Π’ΠΎ врСмя выполнСния:

1. Source считываСт ΠΏΠΎΡ‚ΠΎΠΊ (Kafka, WebSocket …).
2. Handler выполняСт SQL-Π»ΠΎΠ³ΠΈΠΊΡƒ Π² DuckDB.
3. Sink сохраняСт Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠ΅ Ρ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π΅.

βœ… Быстрый старт (β‰ˆ 5 ΠΌΠΈΠ½ΡƒΡ‚)


# ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π·
docker pull turbolytics/sql-flow:latest

# тСстовая ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ
docker run -v $(pwd)/dev:/tmp/conf \
-v /tmp/sqlflow:/tmp/sqlflow \
turbolytics/sql-flow:latest \
dev invoke /tmp/conf/config/examples/basic.agg.yml /tmp/conf/fixtures/simple.json

# запуск ΠΏΡ€ΠΎΡ‚ΠΈΠ² Kafka
docker-compose -f dev/kafka-single.yml up -d # ΠΏΠΎΠ΄Π½ΡΡ‚ΡŒ Kafka

docker run -v $(pwd)/dev:/tmp/conf \
-e SQLFLOW_KAFKA_BROKERS=host.docker.internal:29092 \
turbolytics/sql-flow:latest \
run /tmp/conf/config/examples/basic.agg.mem.yml --max-msgs-to-process=10000


β–ͺ Github

@sqlhub

BY Data Science. SQL hub




Share with your friend now:
tg-me.com/sqlhub/1874

View MORE
Open in Telegram


Data Science SQL hub Telegram | DID YOU KNOW?

Date: |

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

Data Science SQL hub from ms


Telegram Data Science. SQL hub
FROM USA